Rigidity of saddle loops
Autor: | Panazzolo, Daniel, Resman, Maja, Teyssier, Loïc |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A saddle loop is a germ of a holomorphic foliation near a homoclinic saddle connection. We prove that they are classied by their Poincar{\'e} rst-return map. We also prove that they are formally rigid when the Poincar{\'e} map is multivalued. Finally, we provide a list of all analytic classes of Liouville-integrable saddle loops. |
Databáze: | arXiv |
Externí odkaz: |