Slicing knots in definite 4-manifolds
Autor: | Kjuchukova, Alexandra, Miller, Allison N., Ray, Arunima, Sakallı, Sümeyra |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the $\mathbb{CP}^2$-slicing number of knots, i.e. the smallest $m\geq 0$ such that a knot $K\subseteq S^3$ bounds a properly embedded, null-homologous disk in a punctured connected sum $(\#^m\mathbb{CP}^2)^{\times}$. We give a lower bound on the smooth $\mathbb{CP}^2$-slicing number of a knot in terms of its double branched cover, and we find knots with arbitrarily large but finite smooth $\mathbb{CP}^2$-slicing number. We also give an upper bound on the topological $\mathbb{CP}^2$-slicing number in terms of the Seifert form and find knots for which the smooth and topological $\mathbb{CP}^2$-slicing numbers are both finite, nonzero, and distinct. Comment: 33 pages, 3 footnotes |
Databáze: | arXiv |
Externí odkaz: |