New Methods & Metrics for LFQA tasks
Autor: | Mahapatra, Suchismit, Blagojevic, Vladimir, Bertorello, Pablo, Kumar, Prasanna |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Long-form question answering (LFQA) tasks require retrieving the documents pertinent to a query, using them to form a paragraph-length answer. Despite considerable progress in LFQA modeling, fundamental issues impede its progress: i) train/validation/test dataset overlap, ii) absence of automatic metrics and iii) generated answers not being "grounded" in retrieved documents. This work addresses every one these critical bottlenecks, contributing natural language inference/generation (NLI/NLG) methods and metrics that make significant strides to their alleviation. Comment: 8 pages, 8 figures |
Databáze: | arXiv |
Externí odkaz: |