Autor: |
Ranfagni, A., Børkje, K., Marino, F., Marin, F. |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Phys. Rev. Research 4, 033051 (2022) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1103/PhysRevResearch.4.033051 |
Popis: |
We report on the two-dimensional (2D) dynamics of a levitated nanoparticle in an optical cavity. The motion of the nanosphere is strongly coupled to the cavity field by coherent scattering and heavily cooled in the plane orthogonal to the tweezer axis. Due to the characteristics of the 2D motion and the strong optomechanical coupling, the motional sideband asymmetry that reveals the quantum nature of the dynamics is not limited to mere scale factors between Stokes and anti-Stokes peaks, as customary in quantum optomechanics, but assumes a peculiar spectral dependence. We introduce and discuss an effective thermal occupancy that quantifies how close the system is to a minimum uncertainty state and allows us to consistently characterize the particle motion. By rotating the polarization angle of the tweezer beam we tune the system from a one-dimensional (1D) cooling regime, where we achieve a best thermal occupancy of 0.51 $\pm$ 0.05, to a regime in which the fully 2D dynamics of the particle exhibits strong non-classical properties. We achieve a strong 2D confinement with thermal occupancy of 3.4 $\pm$ 0.4 along the warmest direction and around unity in the orthogonal one. These results represents a major improvement with respect to previous experiments both considering the 1D and 2D motion, and pave the way towards the preparation of tripartite optomechanical entangled states and novel applications to directional force and displacement quantum sensing. |
Databáze: |
arXiv |
Externí odkaz: |
|