Efficient reductions and algorithms for variants of Subset Sum

Autor: Dutta, Pranjal, Rajasree, Mahesh Sreekumar
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Given $(a_1, \dots, a_n, t) \in \mathbb{Z}_{\geq 0}^{n + 1}$, the Subset Sum problem ($\mathsf{SSUM}$) is to decide whether there exists $S \subseteq [n]$ such that $\sum_{i \in S} a_i = t$. There is a close variant of the $\mathsf{SSUM}$, called $\mathsf{Subset~Product}$. Given positive integers $a_1, ..., a_n$ and a target integer $t$, the $\mathsf{Subset~Product}$ problem asks to determine whether there exists a subset $S \subseteq [n]$ such that $\prod_{i \in S} a_i=t$. There is a pseudopolynomial time dynamic programming algorithm, due to Bellman (1957) which solves the $\mathsf{SSUM}$ and $\mathsf{Subset~Product}$ in $O(nt)$ time and $O(t)$ space. In the first part, we present {\em search} algorithms for variants of the Subset Sum problem. Our algorithms are parameterized by $k$, which is a given upper bound on the number of realisable sets (i.e.,~number of solutions, summing exactly $t$). We show that $\mathsf{SSUM}$ with a unique solution is already NP-hard, under randomized reduction. This makes the regime of parametrized algorithms, in terms of $k$, very interesting. Subsequently, we present an $\tilde{O}(k\cdot (n+t))$ time deterministic algorithm, which finds the hamming weight of all the realisable sets for a subset sum instance. We also give a poly$(knt)$-time and $O(\log(knt))$-space deterministic algorithm that finds all the realisable sets for a subset sum instance. In the latter part, we present a simple and elegant randomized $\tilde{O}(n + t)$ time algorithm for $\mathsf{Subset~Product}$. Moreover, we also present a poly$(nt)$ time and $O(\log^2 (nt))$ space deterministic algorithm for the same. We study these problems in the unbounded setting as well. Our algorithms use multivariate FFT, power series and number-theoretic techniques, introduced by Jin and Wu (SOSA'19) and Kane (2010).
Comment: A part of this work has been published in the proceedings of CALDAM 2022. We have improved running-time of some algorithms from the previous version of the draft
Databáze: arXiv