On the Erd\H{o}s-Purdy problem and the Zarankiewitz problem for semialgebraic graphs
Autor: | Frankl, Nora, Kupavskii, Andrey |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Erd\H{o}s and Purdy, and later Agarwal and Sharir, conjectured that any set of $n$ points in $\mathbb R^{d}$ determine at most $Cn^{d/2}$ congruent $k$-simplices for even $d$. We obtain the first significant progress towards this conjecture, showing that this number is at most $C n^{3d/4}$ for $k |
Databáze: | arXiv |
Externí odkaz: |