On the Erd\H{o}s-Purdy problem and the Zarankiewitz problem for semialgebraic graphs

Autor: Frankl, Nora, Kupavskii, Andrey
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Erd\H{o}s and Purdy, and later Agarwal and Sharir, conjectured that any set of $n$ points in $\mathbb R^{d}$ determine at most $Cn^{d/2}$ congruent $k$-simplices for even $d$. We obtain the first significant progress towards this conjecture, showing that this number is at most $C n^{3d/4}$ for $k
Databáze: arXiv