Constructions of tight sets of the Hermitian polar space $\mc{H}(2r-1,q^2)$
Autor: | Hui, Alice M. W., Li, Weicong, Xiang, Qing, Zou, Hanlin |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we construct two infinite families of tight sets with parameters $(q^{2r-2}-1)$ and $(q^{2r-1}-q^{2r-2})$, respectively, in the Hermitian polar space $\mathcal{H}(2r-1,q^2)$ for any $r\ge 2$ and any prime power $q$. Both families admit $(q-1).\PGL(r,q^2).2.2e$ as the full automorphism group, where $q=p^e$, $p$ is a prime, and $e$ a positive integer. Comment: The main result of the paper was obtained previously in "The geometry of some two-character sets" Designs, Codes and Cryptogr. 46 (2008), no. 2, 231-241, by Cossidente et al |
Databáze: | arXiv |
Externí odkaz: |