Wide ferromagnetic domain walls can host both adiabatic reflectionless spin transport and finite nonadiabatic spin torque: A time-dependent quantum transport picture

Autor: Osorio, Felipe Reyes, Nikolic, Branislav K.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: The key concept in spintronics of current-driven noncollinear magnetic textures, such as magnetic domain walls (DWs), is adiabaticity, i.e., how closely electronic spins track classical localized magnetic moments (LMMs) of the texture. When mistracking occurs nonadiabatic effects arise, the salient of which is nonadiabatic spin transfer torque (STT) where spin angular momentum is exchanged between electrons and LMMs to cause their dynamics and enable DW motion without any current threshold. The microscopic mechanisms behind nonadiabatic STT have been debated theoretically for nearly two decades, but with unanimous conclusion that they should be significant only in narrow DWs. However, this contradicts sharply experiments [O. Boulle {\em et al.}, Phys. Rev. Lett. {\bf 101}, 216601 (2008); C. Burrowes {\em et al.}, Nat. Phys. {\bf 6}, 17 (2010)] observing nonadiabatic STT in DWs much wider than putatively relevant $\sim 1$ nm scale, as well as largely insensitive to further increasing the DW width $w$. Here we employ time-dependent quantum transport for electrons to obtain both nonadiabatic and adiabatic STT from the exact nonequilibrium density matrix and its lowest order as adiabatic density matrix defined by assuming that LMMs are infinitely slow. This allows us to demonstrate that our microscopically, and without any simplifications of prior derivations like effectively static DW, extracted nonadiabatic STT: (i) does not decay, but instead saturates at a finite value, with increasing $w$ of a moving DW ensuring entry into the adiabatic limit, which we characterize by showing that electronic spins do not reflect from the static DW in this limit; and (ii) it has both out-of-DW-plane, as is the case of phenomenological expression widely used in the LLG equation, and in-plane components, where the former remains finite with increasing $w$.
Comment: 7 pages, 4 figures
Databáze: arXiv