On the number of roots for harmonic trinomials
Autor: | Barrera, Gerardo, Barrera, Waldemar, Navarrete, Juan Pablo |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Mathematical Analysis and Applications 2022, Volume 514, Number 2, 126313 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jmaa.2022.126313 |
Popis: | In this manuscript we study the counting problem for harmonic trinomials of the form $a\zeta^n+b\overline{\zeta}^m+c$, where $n,m\in \mathbb{N}$, $n>m$, and $a$, $b$ and $c$ are non-zero complex numbers. As a consequence, we obtain the Fundamental Theorem of Algebra and the Wilmshurst conjecture for harmonic trinomials. The proof of the counting problem relies on the Bohl method introduced in Bohl (1908). Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |