Momentum-dependent scaling exponents of nodal self-energies measured in strange metal cuprates and modelled using semi-holography

Autor: Smit, S., Mauri, E., Bawden, L., Heringa, F., Gerritsen, F., van Heumen, E., Huang, Y. K., Kondo, T., Takeuchi, T., Hussey, N. E., Kim, T. K., Cacho, C., Krikun, A., Schalm, K., Stoof, H. T. C., Golden, M. S.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1038/s41467-024-48594-6
Popis: The anomalous strange metal phase found in high-$T_c$ cuprates does not follow the conventional condensed-matter principles enshrined in the Fermi liquid and presents a great challenge for theory. Highly precise experimental determination of the electronic self-energy can provide a test bed for theoretical models of strange metals, and angle-resolved photoemission can provide this as a function of frequency, momentum, temperature and doping. Here we show that constant energy cuts through the nodal spectral function in (Pb,Bi)$_{2}$Sr$_{2-x}$La$_x$CuO$_{6+\delta}$ have a non-Lorentzian lineshape, meaning the nodal self-energy is $k$ dependent. We show that the experimental data are captured remarkably well by a power law with a $k$-dependent scaling exponent smoothly evolving with doping, a description that emerges naturally from AdS/CFT-based semi-holography. This puts a spotlight on holographic methods for the quantitative modelling of strongly interacting quantum materials like the cuprate strange metals.
Databáze: arXiv