$k$-spectrally monomorphic tournaments

Autor: Boussaïri, Abderrahim, Souktani, Imane, Talbaoui, Imane, Zouagui, Mohamed
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: A tournament is $k$-spectrally monomorphic if all the $k\times k$ principal submatrices of its adjacency matrix have the same characteristic polynomial. Transitive $n$-tournaments are trivially $k$-spectrally monomorphic. We show that there are no other for $k\in \{3,\ldots,n-3\} $. Furthermore, we prove that for $n\geq 5$, a non-transitive $n$-tournament is $(n-2)$-spectrally monomorphic if and only if it is doubly regular. Finally, we give some results on $(n-1)$-spectrally monomorphic regular tournaments.
Databáze: arXiv