The Complexity of the Hausdorff Distance
Autor: | Jungeblut, Paul, Kleist, Linda, Miltzow, Tillmann |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate the computational complexity of computing the Hausdorff distance. Specifically, we show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets is bounded by a given threshold is complete for the complexity class $\forall\exists_<\mathbb{R}$. This implies that the problem is NP-, co-NP-, $\exists\mathbb{R}$- and $\forall\mathbb{R}$-hard. Comment: Preliminary version appeared at SoCG 2022 |
Databáze: | arXiv |
Externí odkaz: |