Seshadri stratifications and standard monomial theory

Autor: Chirivì, Rocco, Fang, Xin, Littelmann, Peter
Rok vydání: 2021
Předmět:
Zdroj: Invent. Math., 234, 489--572 (2023)
Druh dokumentu: Working Paper
DOI: 10.1007/s00222-023-01206-4
Popis: We introduce the notion of a Seshadri stratification on an embedded projective variety. Such a structure enables us to construct a Newton-Okounkov simplicial complex and a flat degeneration of the projective variety into a union of toric varieties. We show that the Seshadri stratification provides a geometric setup for a standard monomial theory. In this framework, Lakshmibai-Seshadri paths for Schubert varieties get a geometric interpretation as successive vanishing orders of regular functions.
Comment: 76 pages
Databáze: arXiv
Nepřihlášeným uživatelům se plný text nezobrazuje