Polyhedral realization of the crystal bases for extremal weight modules over quantized hyperbolic Kac-Moody algebras of rank 2
Autor: | Hiasa, Ryuta |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathfrak{g}$ be a hyperbolic Kac-Moody algebra of rank $2$. We give a polyhedral realization of the crystal basis for the extremal weight module of extremal weight $\lambda$, where $\lambda$ is an integral weight whose Weyl group orbit has neither a dominant integral weight nor an antidominant integral weight. Comment: 23 pages, 2 diagrams |
Databáze: | arXiv |
Externí odkaz: |