Local boundedness of variational solutions to nonlocal double phase parabolic equations
Autor: | Prasad, Harsh, Tewary, Vivek |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove local boundedness of variational solutions to the double phase equation \begin{align*} \partial_t u +& P.V.\int_{\mathbb{R}^N}\frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}}\\ &+a(x,y)\frac{|u(x,t)-u(y,t)|^{q-2}(u(x,t)-u(y,t))}{|x-y|^{N+qs'}} \,dy = 0, \end{align*} under the restrictions $s,s'\in (0,1),\, 1 < p \leq q \leq p\,\frac{2s+N}{N}$ and the non-negative function $(x,y)\mapsto a(x,y)$ is assumed to be measurable and bounded. Comment: 30 pages, subcritical case was added, time-dependence of H was removed |
Databáze: | arXiv |
Externí odkaz: |