Three-chromatic geometric hypergraphs
Autor: | Damásdi, Gábor, Pálvölgyi, Dömötör |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that for any planar convex body C there is a positive integer m with the property that any finite point set P in the plane can be three-colored such that there is no translate of C containing at least m points of P, all of the same color. As a part of the proof, we show a strengthening of the Erd\H{o}s-Sands-Sauer-Woodrow conjecture. Surprisingly, the proof also relies on the two dimensional case of the Illumination conjecture. |
Databáze: | arXiv |
Externí odkaz: |