Magnetic correlations in infinite-layer nickelates: an experimental and theoretical multi-method study

Autor: Ortiz, R. A., Puphal, P., Klett, M., Hotz, F., Kremer, R. K., Trepka, H., Hemmida, M., von Nidda, H. -A. Krug, Isobe, M., Khasanov, R., Luetkens, H., Hansmann, P., Keimer, B., Schäfer, T., Hepting, M.
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. Research 4, 023093 (2022)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevResearch.4.023093
Popis: We report a comprehensive study of magnetic correlations in LaNiO$_{2}$, a parent compound of the recently discovered family of infinite-layer (IL) nickelate superconductors, using multiple experimental and theoretical methods. Our specific heat, muon-spin rotation ($\mu$SR), and magnetic susceptibility measurements on polycrystalline LaNiO$_{2}$ show that long-range magnetic order remains absent down to 2 K. Nevertheless, we detect residual entropy in the low-temperature specific heat, which is compatible with a model fit that includes paramagnon excitations. The $\mu$SR and low-field static and dynamic magnetic susceptibility measurements indicate the presence of short-range magnetic correlations and glassy spin dynamics, which we attribute to local oxygen non-stoichiometry in the average infinite-layer crystal structure. This glassy behavior can be suppressed in strong external fields, allowing us to extract the intrinsic paramagnetic susceptibility. Remarkably, we find that the intrinsic susceptibility shows non-Curie-Weiss behavior at high temperatures, in analogy to doped cuprates that possess robust non-local spin fluctuations. The distinct temperature dependence of the intrinsic susceptibility of LaNiO$_{2}$ can be theoretically understood by a multi-method study of the single-band Hubbard model in which we apply complementary cutting-edge quantum many-body techniques (dynamical mean-field theory, cellular dynamical mean-field theory and the dynamical vertex approximation) to investigate the influence of both short- and long-ranged correlations. Our results suggest a profound analogy between the magnetic correlations in parent (undoped) IL nickelates and doped cuprates.
Comment: 18 pages, 14 figures
Databáze: arXiv