LightSAFT: Lightweight Latent Source Aware Frequency Transform for Source Separation

Autor: Jeong, Yeong-Seok, Kim, Jinsung, Choi, Woosung, Chung, Jaehwa, Jung, Soonyoung
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Conditioned source separations have attracted significant attention because of their flexibility, applicability and extensionality. Their performance was usually inferior to the existing approaches, such as the single source separation model. However, a recently proposed method called LaSAFT-Net has shown that conditioned models can show comparable performance against existing single-source separation models. This paper presents LightSAFT-Net, a lightweight version of LaSAFT-Net. As a baseline, it provided a sufficient SDR performance for comparison during the Music Demixing Challenge at ISMIR 2021. This paper also enhances the existing LightSAFT-Net by replacing the LightSAFT blocks in the encoder with TFC-TDF blocks. Our enhanced LightSAFT-Net outperforms the previous one with fewer parameters.Conditioned source separations have attracted significant attention because of their flexibility, applicability and extensionality. Their performance was usually inferior to the existing approaches, such as the single source separation model. However, a recently proposed method called LaSAFT-Net has shown that conditioned models can show comparable performance against existing single-source separation models. This paper presents LightSAFT-Net, a lightweight version of LaSAFT-Net. As a baseline, it provided a sufficient SDR performance for comparison during the Music Demixing Challenge at ISMIR 2021.
Comment: MDX Workshop @ ISMIR 2021, 6 pages, 1 figure
Databáze: arXiv