Bivariate Chromatic Polynomials of Mixed Graphs

Autor: Beck, Matthias, Kolhatkar, Sampada
Rok vydání: 2021
Předmět:
Zdroj: Discrete Mathematics & Theoretical Computer Science, vol. 25:2, Combinatorics (November 17, 2023) dmtcs:9595
Druh dokumentu: Working Paper
DOI: 10.46298/dmtcs.9595
Popis: The bivariate chromatic polynomial $\chi_G(x,y)$ of a graph $G = (V, E)$, introduced by Dohmen-P\"{o}nitz-Tittmann (2003), counts all $x$-colorings of $G$ such that adjacent vertices get different colors if they are $\le y$. We extend this notion to mixed graphs, which have both directed and undirected edges. Our main result is a decomposition formula which expresses $\chi_G(x,y)$ as a sum of bivariate order polynomials (Beck-Farahmand-Karunaratne-Zuniga Ruiz 2020), and a combinatorial reciprocity theorem for $\chi_G(x,y)$.
Comment: 10 pages, 3 figures, To appear in DMTCS vol.25:2 #2 (2023)
Databáze: arXiv