Autor: |
Lou, Guannan, Liu, Yuze, Zhang, Tiehua, Zheng, Xi |
Rok vydání: |
2021 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We present a spatial-temporal federated learning framework for graph neural networks, namely STFL. The framework explores the underlying correlation of the input spatial-temporal data and transform it to both node features and adjacency matrix. The federated learning setting in the framework ensures data privacy while achieving a good model generalization. Experiments results on the sleep stage dataset, ISRUC_S3, illustrate the effectiveness of STFL on graph prediction tasks. |
Databáze: |
arXiv |
Externí odkaz: |
|