Generalized range of slow random walks on trees

Autor: Andreoletti, Pierre, Kagan, Alexis
Rok vydání: 2021
Předmět:
Zdroj: Ann. Inst. H. Poincar\'e Probab. Statist. 60(2): 1458-1509 (May 2024)
Druh dokumentu: Working Paper
DOI: 10.1214/23-AIHP1367
Popis: In this work, we are interested in the set of visited vertices of a tree $\mathbb{T}$ by a randomly biased random walk $\mathbb{X}:=(X_n,n \in \mathbb{N})$. The aim is to study a generalized range, that is to say the volume of the trace of $\mathbb{X}$ with both constraints on the trajectories of $\mathbb{X}$ and on the trajectories of the underlying branching random potential $\mathbb{V}:=(V(x), x \in \mathbb{T})$. Focusing on slow regime's random walks (see [HS16b], [AC18]), we prove a general result and detail examples. These examples exhibit many different behaviors for a wide variety of ranges, showing the interactions between the trajectories of $\mathbb{X}$ and the ones of $\mathbb{V}$.
Comment: 58 pages
Databáze: arXiv