How to check universality of quantum gates?
Autor: | Sawicki, Adam, Mattioli, Lorenzo, Zimborás, Zoltán |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Phys. Rev. A 105, 052602, 2022 the title was changed to "Universality verification for a set of quantum gates" |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevA.105.052602 |
Popis: | We provide two simple universality criteria. Our first criterion states that $\mathcal{S}\subset G_d:=U(d)$ is universal if and only if $\mathcal{S}$ forms a $\delta$-approximate $t(d)$-design, where $t(2)=6$ and $t(d)=4$ for $d\geq3$. Our second universality criterion says that $\mathcal{S}\subset G_d$ is universal if and only if the centralizer of $\mathcal{S}^{t(d),t(d)}=\{U^{\otimes t(d)}\otimes \bar{U}^{\otimes t(d)}|U\in \mathcal{S}\}$ is equal to the centralizer of $G_d^{t(d),t(d)}=\{U^{\otimes t(d)}\otimes \bar{U}^{\otimes t(d)}|U\in G_d\}$, where $t(2)=3$, and $t(d)=2$ for $d\geq 3$. The equality of the centralizers can be verified by comparing their dimensions. Comment: 5 pages, quadratically improved centralizer condition for universality, some typos fixed and a discussion of the results added. The title of published version was changed to "Universality verification for a set of quantum gates" |
Databáze: | arXiv |
Externí odkaz: |