Upper and lower bounds for Dunkl heat kernel
Autor: | Dziubański, Jacek, Hejna, Agnieszka |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | On $\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|^{k(\alpha)}\, d\mathbf x, $$ let $h_t(\mathbf x,\mathbf y)$ denote the heat kernel of the semigroup generated by the Dunkl Laplace operator $\Delta_k$. Let $d(\mathbf x,\mathbf y)=\min_{\sigma\in G} \| \mathbf x-\sigma(\mathbf y)\|$, where $G$ is the reflection group associated with $R$. We derive the following upper and lower bounds for $h_t(\mathbf x,\mathbf y)$: for all $c_l>1/4$ and $0 Comment: 17 pages, we corrected some typos |
Databáze: | arXiv |
Externí odkaz: |