Schubert Calculus via Fermionic Variables

Autor: Kuwata, Ken
Rok vydání: 2021
Předmět:
Zdroj: Hiroshima Math. J., 54 (2024), 45-59
Druh dokumentu: Working Paper
DOI: 10.32917/h2022010
Popis: Imanishi, Jinzenji and Kuwata provided a recipe for computing Euler number of Grassmann manifold $G(k,N)$ using physical model and its path-integral [S.Imanishi, M.Jinzenji and K.Kuwata, Journal of Geometry and Physics, Volume 180, October 2022, 104623]. They demonstrated that the cohomology ring of $G(k,N)$ is represented by fermionic variables. In this study, using only fermionic variables, we computed an integral of the Chern classes of the dual bundle of the tautological bundle on $G(k,N)$. In other words, the intersection number of the Schubert cycles is obtained using the fermion integral.
Comment: 11 pages
Databáze: arXiv