K\'ahler geometry for $su(1,N|M)$-superconformal mechanics

Autor: Khastyan, Erik, Krivonos, Sergey, Nersessian, Armen
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. A ,105, 025007(2022)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevD.105.025007
Popis: We suggest the $su(1,N|M)$-superconformal mechanics formulated in terms of phase superspace given by the non-compact analogue of complex projective superspace $\mathbb{CP}^{N|M}$. We parameterized this phase space by the specific coordinates allowing to interpret it as a higher-dimensional super-analogue of the Lobachevsky plane parameterized by lower half-plane (Klein model). Then we introduced the canonical coordinates corresponding to the known separation of the "radial" and "angular" parts of (super)conformal mechanics. Relating the "angular" coordinates with action-angle variables we demonstrated that proposed scheme allows to construct the $su(1,N|M)$ supeconformal extensions of wide class of superintegrable systems. We also proposed the superintegrable oscillator- and Coulomb- like systems with a $su(1,N|M)$ dynamical superalgebra, and found that oscillator-like systems admit deformed $\mathcal{N}=2M$ Poincar\'e supersymmetry, in contrast with Coulomb-like ones.
Comment: 15 pages
Databáze: arXiv