K\'ahler geometry for $su(1,N|M)$-superconformal mechanics
Autor: | Khastyan, Erik, Krivonos, Sergey, Nersessian, Armen |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Phys. Rev. A ,105, 025007(2022) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevD.105.025007 |
Popis: | We suggest the $su(1,N|M)$-superconformal mechanics formulated in terms of phase superspace given by the non-compact analogue of complex projective superspace $\mathbb{CP}^{N|M}$. We parameterized this phase space by the specific coordinates allowing to interpret it as a higher-dimensional super-analogue of the Lobachevsky plane parameterized by lower half-plane (Klein model). Then we introduced the canonical coordinates corresponding to the known separation of the "radial" and "angular" parts of (super)conformal mechanics. Relating the "angular" coordinates with action-angle variables we demonstrated that proposed scheme allows to construct the $su(1,N|M)$ supeconformal extensions of wide class of superintegrable systems. We also proposed the superintegrable oscillator- and Coulomb- like systems with a $su(1,N|M)$ dynamical superalgebra, and found that oscillator-like systems admit deformed $\mathcal{N}=2M$ Poincar\'e supersymmetry, in contrast with Coulomb-like ones. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |