A Lattice Model for Super LLT Polynomials
Autor: | Curran, Michael J., Frechette, Claire, Yost-Wolff, Calvin, Zhang, Sylvester W., Zhang, Valerie |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce a solvable lattice model for supersymmetric LLT polynomials, also known as super LLT polynomials, based upon particle interactions in super n-ribbon tableaux. Using operators on a Fock space, we prove a Cauchy identity for super LLT polynomials, simultaneously generalizing the Cauchy and dual Cauchy identities for LLT polynomials. Lastly, we construct a solvable semi-infinite Cauchy lattice model with a surprising Yang-Baxter equation and examine its connections to the Cauchy identity. Comment: 36 pages |
Databáze: | arXiv |
Externí odkaz: |