A Lattice Model for Super LLT Polynomials

Autor: Curran, Michael J., Frechette, Claire, Yost-Wolff, Calvin, Zhang, Sylvester W., Zhang, Valerie
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We introduce a solvable lattice model for supersymmetric LLT polynomials, also known as super LLT polynomials, based upon particle interactions in super n-ribbon tableaux. Using operators on a Fock space, we prove a Cauchy identity for super LLT polynomials, simultaneously generalizing the Cauchy and dual Cauchy identities for LLT polynomials. Lastly, we construct a solvable semi-infinite Cauchy lattice model with a surprising Yang-Baxter equation and examine its connections to the Cauchy identity.
Comment: 36 pages
Databáze: arXiv