On the trace of the integers of a number field
Autor: | Battistoni, Francesco, Zaïmi, Toufik |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $Tr$ denote the trace $\mathbb{Z}$-module homomorphism defined on the ring $\mathcal{O}_{L} $ of the integers of a number field $L.$ We show that $Tr(\mathcal{O}_{L})\varsubsetneq \mathbb{Z}$ if and only if there is a prime factor $p$ of the degree of $L$ such that if $\wp _{1}^{e_{1}}...\wp _{s}^{e_{s}}$ is the prime factorization of the ideal $p\mathcal{O}_{L}$ in $\mathcal{O}_{L},$ then $p$ divides all powers $e_{1},...,e_{s}.$ Also, we prove that the equality $Tr(\mathcal{O}_{L})=\mathbb{Z}$ holds when $L$ is the compositum of certain number fields. Comment: 6 pages |
Databáze: | arXiv |
Externí odkaz: |