A Faster Algorithm for Max Cut in Dense Graphs

Autor: Ghosh, Arijit, Mishra, Gopinath, Raychaudhury, Rahul, Sen, Sayantan
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We design an algorithm for approximating the size of \emph{Max Cut} in dense graphs. Given a proximity parameter $\varepsilon \in (0,1)$, our algorithm approximates the size of \emph{Max Cut} of a graph $G$ with $n$ vertices, within an additive error of $\varepsilon n^2$, with sample complexity $\mathcal{O}(\frac{1}{\varepsilon^3} \log^2 \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon})$ and query complexity of $\mathcal{O}(\frac{1}{\varepsilon^4} \log^3 \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon})$. Since Goldreich, Goldwasser and Ron (JACM 98) gave the first algorithm with sample complexity $\mathcal{O}(\frac{1}{\varepsilon^5}\log \frac{1}{\varepsilon})$ and query complexity of $\mathcal{O}(\frac{1}{\varepsilon^7}\log^2 \frac{1}{\varepsilon})$, there have been several efforts employing techniques from diverse areas with a focus on improving the sample and query complexities. Our work makes the first improvement in the sample complexity as well as query complexity after more than a decade from the previous best results of Alon, Vega, Kannan and Karpinski (JCSS 03) and of Mathieu and Schudy (SODA 08) respectively, both with sample complexity $\mathcal{O}\left(\frac{1}{{\varepsilon}^4}{\log}\frac{1}{\varepsilon}\right)$. We also want to note that the best time complexity of this problem was by Alon, Vega, Karpinski and Kannan (JCSS 03). By combining their result with an approximation technique by Arora, Karger and Karpinski (STOC 95), they obtained an algorithm with time complexity of $2^{\mathcal{O}(\frac{1}{{\varepsilon}^2} \log \frac{1}{\varepsilon})}$. In this work, we have improved this further to $2^{\mathcal{O}(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} )}$.
Comment: The proof of the main claim in the paper is incomplete, and because of this reason, we are withdrawing the paper
Databáze: arXiv