Popis: |
We demonstrate that a circuit comprising two unstable LC resonators coupled via a gyrator supports an exceptional point of degeneracy (EPD) with purely real eigenfrequency. Each of the two resonators includes either a capacitor or an inductor with a negative value, showing purely imaginary resonance frequency when not coupled to the other via the gyrator. With external perturbation imposed on the system, we show analytically that the resonance frequency response of the circuit follows the square-root dependence on perturbation, leading to possible sensor applications. Furthermore, the effect of small losses in the resonators is investigated, and we show that losses lead to instability. In addition, the EPD occurrence and sensitivity are demonstrated by showing that the relevant Puiseux fractional power series expansion describes the eigenfrequency bifurcation near the EPD. The EPD has the great potential to enhance the sensitivity of a sensing system by orders of magnitude. Making use of the EPD in the gyrator-based circuit, our results pave the way to realize a new generation of high-sensitive sensors to measure small physical or chemical perturbations. |