Least energy positive solutions of critical Schr\'{o}dinger systems with mixed competition and cooperation terms: the higher dimensional case
Autor: | Tavares, Hugo, You, Song, Zou, Wenming |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\Omega\subset \mathbb{R}^{N}$ be a smooth bounded domain. In this paper we investigate the existence of least energy positive solutions to the following Schr\"{o}dinger system with $d\geq 2$ equations \begin{equation*} -\Delta u_{i}+\lambda_{i}u_{i}=|u_{i}|^{p-2}u_{i}\sum_{j = 1}^{d}\beta_{ij}|u_{j}|^{p} \text{ in } \Omega, \quad u_i=0 \text{ on } \partial \Omega, \qquad i=1,...,d, \end{equation*} in the case of a critical exponent $2p=2^*=\frac{2N}{N-2}$ in high dimensions $N\geq 5$. We treat the focusing case ($\beta_{ii}>0$ for every $i$) in the variational setting $\beta_{ij}=\beta_{ji}$ for every $i\neq j$, dealing with a Br\'ezis-Nirenberg type problem: $-\lambda_{1}(\Omega)<\lambda_{i}<0$, where $\lambda_{1}(\Omega)$ is the first eigenvalue of $(-\Delta,H^1_0(\Omega))$. We provide several sufficient conditions on the coefficients $\beta_{ij}$ that ensure the existence of least energy positive solutions; these include the situations of pure cooperation ($\beta_{ij}> 0$ for every $i\neq j$), pure competition ($\beta_{ij}\leq 0$ for every $i\neq j$) and coexistence of both cooperation and competition coefficients. Some proofs depend heavily on the fact that $1 0$, $-\lambda_1(\Omega)<\lambda<0$ for all $N\geq 4$, a result which is new in dimensions $N=4,5$. |
Databáze: | arXiv |
Externí odkaz: |