Cosmetic operations and Khovanov multicurves
Autor: | Kotelskiy, Artem, Lidman, Tye, Moore, Allison H., Watson, Liam, Zibrowius, Claudius |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Math. Ann. 389 (2023) 2903-2930 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00208-023-02697-5 |
Popis: | We prove an equivariant version of the Cosmetic Surgery Conjecture for strongly invertible knots. Our proof combines a recent result of Hanselman with the Khovanov multicurve invariants $\widetilde{\operatorname{Kh}}$ and $\widetilde{\operatorname{BN}}$. We apply the same techniques to reprove a result of Wang about the Cosmetic Crossing Conjecture and split links. Along the way, we show that $\widetilde{\operatorname{Kh}}$ and $\widetilde{\operatorname{BN}}$ detect if a Conway tangle is split. Comment: 20 pages, 11 color figures created with PSTricks and Inkscape. Comments welcome! |
Databáze: | arXiv |
Externí odkaz: |