Cosmetic operations and Khovanov multicurves

Autor: Kotelskiy, Artem, Lidman, Tye, Moore, Allison H., Watson, Liam, Zibrowius, Claudius
Rok vydání: 2021
Předmět:
Zdroj: Math. Ann. 389 (2023) 2903-2930
Druh dokumentu: Working Paper
DOI: 10.1007/s00208-023-02697-5
Popis: We prove an equivariant version of the Cosmetic Surgery Conjecture for strongly invertible knots. Our proof combines a recent result of Hanselman with the Khovanov multicurve invariants $\widetilde{\operatorname{Kh}}$ and $\widetilde{\operatorname{BN}}$. We apply the same techniques to reprove a result of Wang about the Cosmetic Crossing Conjecture and split links. Along the way, we show that $\widetilde{\operatorname{Kh}}$ and $\widetilde{\operatorname{BN}}$ detect if a Conway tangle is split.
Comment: 20 pages, 11 color figures created with PSTricks and Inkscape. Comments welcome!
Databáze: arXiv