Partial Hasse invariants for Shimura varieties of Hodge-type

Autor: Imai, Naoki, Koskivirta, Jean-Stefan
Rok vydání: 2021
Předmět:
Zdroj: Adv. Math. 440 (2024), Paper No. 109518, 47 pp
Druh dokumentu: Working Paper
DOI: 10.1016/j.aim.2024.109518
Popis: For a connected reductive group $G$ over a finite field, we define partial Hasse invariants on the stack of $G$-zip flags. We obtain similar sections on the flag space of Shimura varieties of Hodge-type. They are mod $p$ automorphic forms which cut out a single codimension one stratum. We study their properties and show that such invariants admit a natural factorization through higher rank automorphic vector bundles. We define the socle of an automorphic vector bundle, and show that partial Hasse invariants lie in this socle.
Comment: 38 pages
Databáze: arXiv