Partial Hasse invariants for Shimura varieties of Hodge-type
Autor: | Imai, Naoki, Koskivirta, Jean-Stefan |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Adv. Math. 440 (2024), Paper No. 109518, 47 pp |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.aim.2024.109518 |
Popis: | For a connected reductive group $G$ over a finite field, we define partial Hasse invariants on the stack of $G$-zip flags. We obtain similar sections on the flag space of Shimura varieties of Hodge-type. They are mod $p$ automorphic forms which cut out a single codimension one stratum. We study their properties and show that such invariants admit a natural factorization through higher rank automorphic vector bundles. We define the socle of an automorphic vector bundle, and show that partial Hasse invariants lie in this socle. Comment: 38 pages |
Databáze: | arXiv |
Externí odkaz: |