G-torsors and universal torsors over nonsplit del Pezzo surfaces
Autor: | Derenthal, Ulrich, Hoffmann, Norbert |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let S be a smooth del Pezzo surface that is defined over a field K and splits over a Galois extension L. Let G be either the split reductive group given by the root system of $S_L$ in Pic $S_L$, or a form of it containing the N\'eron-Severi torus. Let $\mathcal{G}$ be the G-torsor over $S_L$ obtained by extension of structure group from a universal torsor $\mathcal{T}$ over $S_L$. We prove that $\mathcal{G}$ does not descend to S unless $\mathcal{T}$ does. This is in contrast to a result of Friedman and Morgan that such $\mathcal{G}$ always descend to singular del Pezzo surfaces over $\mathbb{C}$ from their desingularizations. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |