Computing structure constants for rings of finite rank from minimal free resolutions
Autor: | Fisher, Tom, Radičević, Lazar |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show how the minimal free resolution of a set of $n$ points in general position in projective space of dimension $n-2$ explicitly determines structure constants for a ring of rank $n$. This generalises previously known constructions of Levi-Delone-Faddeev and Bhargava in the cases $n=3,4,5$. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |