Littlestone and VC-dimension of families of zero sets
Autor: | Guingona, Vincent, Kolesnikov, Alexei, Nierwinski, Julie, Soucy, Richard |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that, for any $d$ linearly independent functions from some set into a $d$-dimensional vector space over any field, the family of zero sets of all non-trivial linear combination of these functions has VC-dimension and Littlestone dimension $d-1$. Additionally, we characterize when such families are maximal of VC-dimension $d-1$ and give a sufficient condition for when they are maximal of Littlestone dimension $d-1$. Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |