A new characterisation of quasi-hereditary Nakayama algebras and applications
Autor: | Marczinzik, René, Sen, Emre |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We call a finite dimensional algebra A S-connected if the projective dimensions of the simple A-modules form an interval. We prove that a Nakayama algebra A is S-connected if and only if A is quasi-hereditary. We apply this result to improve an inequality for the global dimension of quasi-hereditary Nakayama algebras due to Brown. We furthermore classify the Nakayama algebras where equality is attained in Brown's inequality and show that they are enumerated by the even indexed Fibonacci numbers if the algebra is cyclic and by the odd indexed Fibonacci numbers if the algebra is linear. Comment: v2. typos fixed, references added |
Databáze: | arXiv |
Externí odkaz: |