Ricci curvature integrals, local functionals, and the Ricci flow

Autor: Ma, Yuanqing, Wang, Bing
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Consider a Riemannian manifold $(M^{m}, g)$ whose volume is the same as the standard sphere $(S^{m}, g_{round})$. If $p>\frac{m}{2}$ and $\int_{M} \left\{ Rc-(m-1)g\right\}_{-}^{p} dv$ is sufficiently small, we show that the normalized Ricci flow initiated from $(M^{m}, g)$ will exist immortally and converge to the standard sphere. The choice of $p$ is optimal.
Databáze: arXiv