Ricci curvature integrals, local functionals, and the Ricci flow
Autor: | Ma, Yuanqing, Wang, Bing |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Consider a Riemannian manifold $(M^{m}, g)$ whose volume is the same as the standard sphere $(S^{m}, g_{round})$. If $p>\frac{m}{2}$ and $\int_{M} \left\{ Rc-(m-1)g\right\}_{-}^{p} dv$ is sufficiently small, we show that the normalized Ricci flow initiated from $(M^{m}, g)$ will exist immortally and converge to the standard sphere. The choice of $p$ is optimal. |
Databáze: | arXiv |
Externí odkaz: |