$\mathcal{O}$-operators on Lie $\infty$-algebras with respect to Lie $\infty$-actions
Autor: | Caseiro, R., da Costa, J. Nunes |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1080/00927872.2022.2025819 |
Popis: | We define $\mathcal{O}$-operators on a Lie $\infty$-algebra $E$ with respect to an action of $E$ on another Lie $\infty$-algebra and we characterize them as Maurer-Cartan elements of a certain Lie $\infty$-algebra obtained by Voronov's higher derived brackets construction. The Lie $\infty$-algebra that controls the deformation of $\mathcal{O}$-operators with respect to a fixed action is determined. |
Databáze: | arXiv |
Externí odkaz: |