Linear cover time is exponentially unlikely

Autor: Dubroff, Quentin, Kahn, Jeff
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Proving a 2009 conjecture of Itai Benjamini, we show: For any C there is an $\varepsilon>0$ such that for any simple graph $G$ on $V$ of size $n$, and $X_0,\ldots$ an ordinary random walk on $G$, $P(\{X_0,\dots, X_{Cn}\}= V) < e^{-\varepsilon n}.$ A first ingredient in the proof of this is a similar statement for Markov chains in which all transition probabilities are sufficiently small relative to $C$.
Comment: 20 pages; appendix added
Databáze: arXiv