On Estimation and Cross-validation of Dynamic Treatment Regimes with Competing Risks
Autor: | Morzywolek, Pawel, Steen, Johan, Van Biesen, Wim, Decruyenaere, Johan, Vansteelandt, Stijn |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The optimal moment to start renal replacement therapy in a patient with acute kidney injury (AKI) remains a challenging problem in intensive care nephrology. Multiple randomised controlled trials have tried to answer this question, but these can, by definition, only analyse a limited number of treatment initiation strategies. In view of this, we use routinely collected observational data from the Ghent University Hospital intensive care units (ICUs) to investigate different pre-specified timing strategies for renal replacement therapy initiation based on time-updated levels of serum potassium, pH and fluid balance in critically ill patients with AKI with the aim to minimize 30-day ICU mortality. For this purpose, we apply statistical techniques for evaluating the impact of specific dynamic treatment regimes in the presence of ICU discharge as a competing event. We discuss two approaches, a non-parametric one - using an inverse probability weighted Aalen-Johansen estimator - and a semiparametric one - using dynamic-regime marginal structural models. Furthermore, we suggest an easy to implement cross-validation technique that can be used for the out-of-sample performance assessment of the optimal dynamic treatment regime. Our work illustrates the potential of data-driven medical decision support based on routinely collected observational data. Comment: 49 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |