A Small Maximal Sidon Set In $Z_2^n$

Autor: Redman, Maximus, Rose, Lauren, Walker, Raphael
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: A Sidon set is a subset of an Abelian group with the property that each sum of two distinct elements is distinct. We construct a small maximal Sidon set of size $O((n \cdot 2^n)^{1/3})$ in the group $\mathbb{Z}_2^n$, generalizing a result of Ruzsa concerning maximal Sidon sets in the integers.
Comment: 7 pages, no figures. Final version to appear in SIDMA
Databáze: arXiv