A Small Maximal Sidon Set In $Z_2^n$
Autor: | Redman, Maximus, Rose, Lauren, Walker, Raphael |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A Sidon set is a subset of an Abelian group with the property that each sum of two distinct elements is distinct. We construct a small maximal Sidon set of size $O((n \cdot 2^n)^{1/3})$ in the group $\mathbb{Z}_2^n$, generalizing a result of Ruzsa concerning maximal Sidon sets in the integers. Comment: 7 pages, no figures. Final version to appear in SIDMA |
Databáze: | arXiv |
Externí odkaz: |