Faster Exponential Algorithm for Permutation Pattern Matching

Autor: Gawrychowski, Pawel, Rzepecki, Mateusz
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: The Permutation Pattern Matching problem asks, given two permutations $\sigma$ on $n$ elements and $\pi$, whether $\sigma$ admits a subsequence with the same relative order as $\pi$ (or, in the counting version, how many such subsequences are there). This natural problem was shown by Bose, Buss and Lubiw [IPL 1998] to be NP-complete, and hence we should seek exact exponential time solutions. The asymptotically fastest such solution up to date, by Berendsohn, Kozma and Marx [IPEC 2019], works in $\mathcal{O}(1.6181^n)$ time. We design a simple and faster $\mathcal{O}(1.415^{n})$ time algorithm for both the detection and the counting version. We also prove that this is optimal among a certain natural class of algorithms.
Databáze: arXiv