MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble for Breast Cancer Histology Image Classification

Autor: Senousy, Zakaria, Abdelsamea, Mohammed M., Gaber, Mohamed Medhat, Abdar, Moloud, Acharya, U Rajendra, Khosravi, Abbas, Nahavandi, Saeid
Rok vydání: 2021
Předmět:
Zdroj: IEEE Transactions on Biomedical Engineering 2021
Druh dokumentu: Working Paper
DOI: 10.1109/TBME.2021.3107446
Popis: Breast histology image classification is a crucial step in the early diagnosis of breast cancer. In breast pathological diagnosis, Convolutional Neural Networks (CNNs) have demonstrated great success using digitized histology slides. However, tissue classification is still challenging due to the high visual variability of the large-sized digitized samples and the lack of contextual information. In this paper, we propose a novel CNN, called Multi-level Context and Uncertainty aware (MCUa) dynamic deep learning ensemble model.MCUamodel consists of several multi-level context-aware models to learn the spatial dependency between image patches in a layer-wise fashion. It exploits the high sensitivity to the multi-level contextual information using an uncertainty quantification component to accomplish a novel dynamic ensemble model.MCUamodelhas achieved a high accuracy of 98.11% on a breast cancer histology image dataset. Experimental results show the superior effectiveness of the proposed solution compared to the state-of-the-art histology classification models.
Comment: accepted by IEEE Transactions on Biomedical Engineering
Databáze: arXiv