On geometry of the unit ball of Paley-Wiener space over two symmetric intervals
Autor: | Ulanovskii, Alexander, Zlotnikov, Ilya |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | International Mathematics Research Notices, Volume 2023, Issue 8, 6329--6363, (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1093/imrn/rnac043 |
Popis: | Let $PW_S^1$ be the space of integrable functions on $\mathbb{R}$ whose Fourier transform vanishes outside $S$, where $S = [-\sigma,-\rho]\cup[\rho,\sigma]$, $0<\rho<\sigma$. In the case $\rho>\sigma/2$, we present a complete description of the set of extreme and the set of exposed points of the unit ball of $PW^1_S$. The structure of these sets becomes more complicated when $\rho<\sigma/2$. Comment: 28 pages, the description of exposed points is added |
Databáze: | arXiv |
Externí odkaz: |