On geometry of the unit ball of Paley-Wiener space over two symmetric intervals

Autor: Ulanovskii, Alexander, Zlotnikov, Ilya
Rok vydání: 2021
Předmět:
Zdroj: International Mathematics Research Notices, Volume 2023, Issue 8, 6329--6363, (2023)
Druh dokumentu: Working Paper
DOI: 10.1093/imrn/rnac043
Popis: Let $PW_S^1$ be the space of integrable functions on $\mathbb{R}$ whose Fourier transform vanishes outside $S$, where $S = [-\sigma,-\rho]\cup[\rho,\sigma]$, $0<\rho<\sigma$. In the case $\rho>\sigma/2$, we present a complete description of the set of extreme and the set of exposed points of the unit ball of $PW^1_S$. The structure of these sets becomes more complicated when $\rho<\sigma/2$.
Comment: 28 pages, the description of exposed points is added
Databáze: arXiv