Group Structure of Wilson Loops in 2D Models with 2- and 4-Band Energy Spectra
Autor: | Supatashvili, T., Eliashvili, M., Tsitsishvili, G. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Int. J. Mod. Phys. B 36 (2022) 2250197 |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0217979222501971 |
Popis: | We consider a tight-binding model defined by a matrix Hamiltonian over 2D Brillouin zone. Multiband energy spectrum gives rise to a non-Abelian gauge structure set by the Berry connections. The corresponding curvature $F_{\mu\nu}$ vanishes throughout the Brillouin zone except an isolated points where $F_{\mu\nu}$ is singular. Combining the singular behaviour of $F_{\mu\nu}$ with non-Abelian Stokes theorem allows to avoid the path ordering procedure in studying the structure of Wilson loops. 2D models with 2-band and 4-band energy spectra are considered as a demonstrative examples and the group structure of the corresponding Wilson loops is revealed. Comment: 7 pages |
Databáze: | arXiv |
Externí odkaz: |