Characterization and performance of the Apollon Short-Focal-Area facility following its commissioning at 1 PW level

Autor: Burdonov, K., Fazzini, A., Lelasseux, V., Albrecht, J., Antici, P., Ayoul, Y., Beluze, A., Cavanna, D., Ceccotti, T., Chabanis, M., Chaleil, A., Chen, S. N., Chen, Z., Consoli, F., Cuciuc, M., Davoine, X., Delaneau, J. P., d'Humières, E., Dubois, J-L., Evrard, C., Filippov, E., Freneaux, A., Forestier-Colleoni, P., Gremillet, L., Horny, V., Lancia, L., Lecherbourg, L., Lebas, N., Leblanc, A., Ma, W., Martin, L., Negoita, F., Paillard, J-L., Papadopoulos, D., Perez, F., Pikuz, S., Qi, G., Quéré, F., Ranc, L., Söderstrom, P. -A., Scisciò, M., Sun, S., Vallières, S., Wang, P., Yao, W., Mathieu, F., Audebert, P., Fuchs, J.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/5.0065138
Popis: We present the results of the first commissioning phase of the ``short focal length'' area (SFA) of the Apollon laser facility (located in Saclay, France), which was performed with the first available laser beam (F2), scaled to a nominal power of one petawatt. Under the conditions that were tested, this beam delivered on target pulses of 10 J average energy and 24 fs duration. Several diagnostics were fielded to assess the performance of the facility. The on-target focal spot, its spatial stability, the temporal intensity profile prior to the main pulse, as well as the resulting density gradient formed at the irradiated side of solid targets, have been thoroughly characterized, with the goal of helping users design future experiments. Emissions of energetic electrons, ions, and electromagnetic radiation were recorded, showing good laser-to-target coupling efficiency and an overall performance comparable with that of similar international facilities. This will be followed in 2022 by a further commissioning stage at the multi-petawatt level.
Databáze: arXiv