QED Mesons, the QED Neutron, and the Dark Matter

Autor: Wong, Cheuk-Yin
Rok vydání: 2021
Předmět:
Zdroj: EPJ Web of Conferences 259, 13016 (2022)
Druh dokumentu: Working Paper
DOI: 10.1051/epjconf/202225913016
Popis: Schwinger's boson solution for massless fermions in QED in 1+1D has been applied and generalized to quarks interacting in QED and QCD interactions, leading to stable and confined open-string QED and QCD boson excitations of the quark-QCD-QED system in 1+1D. Just as the open-string QCD excitations in 1+1D can be the idealization of QCD mesons with a flux tube in 3+1D, so the open-string QED excitations in 1+1D may likewise be the idealization of QED mesons with masses in the tens of MeV region, corresponding possibly to the anomalous X17 and E38 particles observed recently. A further search for bound states of quarks interacting in the QED interaction alone leads to the examination on the stability of the QED neutron, consisting of two $d$ quarks and one $u$ quark. Theoretically, the QED neutron has been found to be stable and estimated to have a mass of 44.5 MeV, whereas the analogous QED proton is unstable, leading to a long-lived QED neutron that may be a good candidate for the dark matter.
Comment: 4 pages, 1 figure. Talk presented at the 19th International Conference on Strangeness in Quark Matter, Brookhaven National Laboratory, Upton, USA, 17-22 May 2021, to be published in the EPJ Web of Conference
Databáze: arXiv