Integrable LCK manifolds

Autor: Cappelletti-Montano, Beniamino, De Nicola, Antonio, Yudin, Ivan
Rok vydání: 2021
Předmět:
Zdroj: Annals of Global Analysis and Geometry, 61 (2022) 479-497
Druh dokumentu: Working Paper
DOI: 10.1007/s10455-021-09821-1
Popis: We study a natural class of LCK manifolds that we call integrable LCK manifolds: those where the anti-Lee form $\eta$ corresponds to an integrable distribution. As an application we obtain a characterization of unimodular integrable LCK Lie algebras as K\"ahler Lie algebras equipped with suitable derivations.
Comment: 19 pages
Databáze: arXiv