Autor: |
Ferreira, Bruno Leonardo Macedo, Kaygorodov, Ivan, Kudaybergenov, Karimbergen |
Rok vydání: |
2021 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s11587-021-00602-3 |
Popis: |
In the present paper, we prove that every local and $2$-local derivation of the complex finite-dimensional simple Filippov algebra is a derivation. As a corollary we have the description of all local and $2$-local derivations of complex finite-dimensional semisimple Filippov algebras. All local derivations of the ternary Malcev algebra $M_8$ are described. It is the first example of a finite-dimensional simple algebra that admits pure local derivations, i.e. algebra admits a local derivation which is not a derivation. |
Databáze: |
arXiv |
Externí odkaz: |
|