Local and $2$-local derivations of simple $n$-ary algebras

Autor: Ferreira, Bruno Leonardo Macedo, Kaygorodov, Ivan, Kudaybergenov, Karimbergen
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s11587-021-00602-3
Popis: In the present paper, we prove that every local and $2$-local derivation of the complex finite-dimensional simple Filippov algebra is a derivation. As a corollary we have the description of all local and $2$-local derivations of complex finite-dimensional semisimple Filippov algebras. All local derivations of the ternary Malcev algebra $M_8$ are described. It is the first example of a finite-dimensional simple algebra that admits pure local derivations, i.e. algebra admits a local derivation which is not a derivation.
Databáze: arXiv