Popis: |
Compressive imaging aims to recover a latent image from under-sampled measurements, suffering from a serious ill-posed inverse problem. Recently, deep neural networks have been applied to this problem with superior results, owing to the learned advanced image priors. These approaches, however, require training separate models for different imaging modalities and sampling ratios, leading to overfitting to specific settings. In this paper, a dynamic proximal unrolling network (dubbed DPUNet) was proposed, which can handle a variety of measurement matrices via one single model without retraining. Specifically, DPUNet can exploit both the embedded observation model via gradient descent and imposed image priors by learned dynamic proximal operators, achieving joint reconstruction. A key component of DPUNet is a dynamic proximal mapping module, whose parameters can be dynamically adjusted at the inference stage and make it adapt to different imaging settings. Experimental results demonstrate that the proposed DPUNet can effectively handle multiple compressive imaging modalities under varying sampling ratios and noise levels via only one trained model, and outperform the state-of-the-art approaches. |